EquationEquation GraphGraph FocusFocus Length of LRLength\space of\space LR DirectrixDirectrix Length of Transverse AxisLength\space of\space Transverse\space Axis
x2a2 y2b2 =1\frac{x^2}{a^2}\space-\frac{y^2}{b^2}\space=1 (±ae,0)(±ae,0) 2b2a\frac{2b^2}{a} x=±aex=±\frac{a}{e} 2a2a
y2b2 x2a2 =1\frac{y^2}{b^2}\space-\frac{x^2}{a^2}\space=1 (0,±be)(0,±be) 2a2b\frac{2a^2}{b} y=±bey=±\frac{b}{e} 2b2b
x2 y2 =a2{x^2}\space-{y^2}\space={a^2} (0,±a2)(0, ±a{\sqrt{2}} ) 2a2a x=±a2x=±\frac{a}{\sqrt{2}} 2a2a

Equations of Tangent of Hyperbola

EquationEquation Parametric CoordinatesParametric\space Coordinates Equation of tangentEquation\space of\space tangent Condition of TangencyCondition\space of \space Tangency
x2a2 y2b2 =1\frac{x^2}{a^2}\space-\frac{y^2}{b^2}\space=1 (asecθ,btanθ)(asec\theta,btan\theta) y=mx±am2b2y=mx±\sqrt{am^2-b^2} c=±am2b2c=±\sqrt{am^2-b^2}
y2b2 x2a2 =1\frac{y^2}{b^2}\space-\frac{x^2}{a^2}\space=1 (bsecθ,atanθ)(bsec\theta,atan\theta) y=mx±bm2+a2y=mx±\sqrt{-bm^2+a^2} c=±bm2+a2c=±\sqrt{-bm^2+a^2}
x2 y2 =a2{x^2}\space-{y^2}\space={a^2} (asecθ,atanθ)(asec\theta,atan\theta) y=mx±am2a2y=mx±\sqrt{am^2-a^2} c=±am2a2c=±\sqrt{am^2-a^2}

Equations of Normal of Hyperbola

EquationEquation Parametric CoordinatesParametric\space Coordinates Equation of NormalEquation\space of\space Normal Condition of NormalityCondition\space of \space Normality
x2a2 y2b2 =1\frac{x^2}{a^2}\space-\frac{y^2}{b^2}\space=1 (asecθ,btanθ)(asec\theta,btan\theta) axsecθ+bytanθ=a2+b2\frac{ax}{sec\theta}+\frac{by}{tan\theta}=a^2+b^2 c=m(a2+b2)a2b2m2c=\frac{m(a^2+b^2)}{\sqrt{a^2-b^2m^2}}
y2b2 x2a2 =1\frac{y^2}{b^2}\space-\frac{x^2}{a^2}\space=1 (bsecθ,atanθ)(bsec\theta,atan\theta) bxsecθ+aytanθ=b2+a2\frac{bx}{sec\theta}+\frac{ay}{tan\theta}=b^2+a^2 c=m(b2a2)a2m2b2c=\frac{m(b^2-a^2)}{\sqrt{a^2m^2-b^2}}
x2 y2 =a2{x^2}\space-{y^2}\space={a^2} (asecθ,atanθ)(asec\theta,atan\theta) xsecθ+ytanθ=2a\frac{x}{sec\theta}+\frac{y}{tan\theta}=2a c=2am1m2c=\frac{2am}{\sqrt{1-m^2}}

Equations of Director Circle of Hyperbola

EquationEquation Equation of Director CircleEquation\space of\space Director\space Circle
x2a2 y2b2 =1\frac{x^2}{a^2}\space-\frac{y^2}{b^2}\space=1 x2+y2 =a2b2x^2\,+\,y^2\space\,=a^2\,-\,b^2
y2b2 x2a2 =1\frac{y^2}{b^2}\space-\frac{x^2}{a^2}\space=1 x2+y2 =b2a2x^2\,+\,y^2\space\,=b^2\,-\,a^2